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Abstract—Prognostics has taken center stage in Condition 
Based Maintenance (CBM) where it is desired to estimate 
Remaining Useful Life (RUL) of the system so that remedial 
measures may be taken in advance to avoid catastrophic 
events or unwanted downtimes. Validation of such 
predictions is an important but difficult proposition and a 
lack of appropriate evaluation methods renders prognostics 
meaningless. Evaluation methods currently used in the 
research community are not standardized and in many cases 
do not sufficiently assess key performance aspects expected 
out of a prognostics algorithm. In this paper we introduce 
several new evaluation metrics tailored for prognostics and 
show that they can effectively evaluate various algorithms as 
compared to other conventional metrics. The four prognostic 
algorithms are Relevance Vector Machine (RVM), Gaussian 
Process Regression (GPR), Artificial Neural Network 
(ANN), and Polynomial Regression (PR) are compared. 
These algorithms vary in complexity and their ability to 
manage uncertainty around predicted estimates. Results 
show that the new metrics rank these algorithms in a 
different manner; depending on the requirements and 
constraints suitable metrics may be chosen. Beyond these 
results, this paper offers ideas about how metrics suitable to 
prognostics may be designed so that the evaluation 
procedure can be standardized. 1 2 
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1. INTRODUCTION 
Prognostics is an emerging concept in condition based 
maintenance (CBM) of critical systems. Along with 
developing the fundamentals of being able to confidently 
predict Remaining Useful Life (RUL), the technology calls 
for fielded applications as it inches towards maturation. This 
requires a stringent performance evaluation so that the 
significance of the concept can be fully understood. 
Currently, prognostics concepts lack standard definitions 
and suffer from ambiguous and inconsistent interpretations. 
This lack of standards is in part due to the varied end-user 
requirements for different applications, a wide range of time 
scales involved, available domain information, domain 
dynamics, etc. to name a few issues. The research 
community has used a variety of metrics based largely on 
convenience with respect to their respective requirements. 
Very little attention has been focused on establishing a 
common ground to compare different efforts.  

This paper builds upon previous work that surveyed metrics 
in use for prognostics in a variety of domains including 
medicine, nuclear, automotive, aerospace, and electronics. 
[1]. The previous effort suggested a list of metrics to assess 
critical aspects of RUL predictions. This paper will show 
how such metrics can be used to assess the performance of 
prognostic algorithms. Furthermore, it will assess whether 
these metrics capture the performance criteria for which they 
were designed. The paper will focus on metrics that are 
specifically designed for prognostics beyond conventional 
metrics currently being used for diagnostics and other 
forecasting applications. These metrics in general address 
the issue of how well the RUL prediction estimates improve 
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over time as more measurement data become available. A 
good prognostic algorithm should not only improve in RUL 
estimation but also ensure a reasonable prediction horizon 
and confidence levels on the predictions. 

Overall the paper is expected to enhance a general 
understanding of these metrics so that they can be further 
refined and be accepted by the research community as 
standard metrics for the performance assessment of 
prognostics algorithms.  

2. MOTIVATION  
Prognostics technology is reaching a point where it must be 
evaluated in real world environments in a truly integrated 
fashion. This, however, requires rigorous testing and 
evaluation on a variety of performance measures before they 
can be certified for critical systems. For end-of-life 
predictions of critical systems, it becomes imperative to 
establish a fair amount of faith in the prognostic systems 
before incorporating their predictions into the decision-
making process. Furthermore, performance metrics help 
establish design requirements that must be met. In the 
absence of standardized metrics it has been difficult to 
quantify acceptable performance limits and specify crisp and 
unambiguous requirements to the designers. Performance 
evaluation allows comparing different algorithms and also 
yields constructive feedback to further improve these 
algorithms.  

Performance evaluation is usually the foremost step once a 
new technique is developed. In many cases benchmark 
datasets or models are used to evaluate such techniques on 
common ground so they can be fairly compared. Prognostic 
systems, in most cases, have neither of these options. 
Different researchers have used different metrics to evaluate 
their algorithms, making it rather difficult to compare 
various algorithms even if they have been declared 
successful based on their respective evaluations. It is 
accepted that prognostics methods must be tailored for 
specific applications, which makes it difficult to develop a 
generic algorithm useful for every situation. In such cases 
customized metrics may be used but there are characteristics 
of prognostics applications that remain unchanged and 
corresponding performance evaluation can establish a basis 
for comparisons. So far very little has been done to identify 
common ground when it comes to testing and comparing 
different algorithms. In two surveys of methods for 
prognostics (one of data-driven methods and one of 
artificial-intelligence-based methods) [2, 3], it can be seen 
that there is a lack of standardized methodology for 
performance evaluation and in many cases performance 
evaluation is not even formally addressed. Even the ISO 
standard [4] for prognostics in condition monitoring and 
diagnostics of machines lacks a firm definition of such 
metrics. Therefore, in this paper we present several new 
metrics and show how they can be effectively used to 

compare different algorithms. With these ideas we hope to 
provide some starting points for future discussions. 

3. PREVIOUS WORK 
In a recent effort a thorough survey of various application 
domains that employ prediction related tasks was conducted 
[1]. The central idea there was to identify established 
methods of performance evaluation in the domains that can 
be considered mature and already have fielded applications. 
Specifically, domains like medicine, weather, nuclear, 
finance and economics, automotive, aerospace, electronics, 
etc. were considered. The survey revealed that although each 
domain employs a variety of custom metrics, metrics based 
on accuracy and precision dominated the landscape. 
However, these metrics were often used in different contexts 
depending on the type of data available and the kind of 
information derived from them. This suggests that one must 
interpret the usage very carefully before borrowing any 
concepts from other domains. A brief summary of the 
findings is presented here for reference. 

Domains like medicine and finance heavily utilize statistical 
measures. These domains benefit from availability of large 
datasets under different conditions. Predictions in medicine 
are based on hypothesis testing methodologies and metrics 
like accuracy, precision, interseparability, and resemblance 
are computed on test outcomes. In finance, statistical 
measures are computed on errors calculated based on 
reference prediction models. Metrics like MSE (mean 
squared error), MAD (mean absolute deviation), MdAD 
(median absolute deviation), MAPE (mean absolute 
percentage error), and their several variations are widely 
used. These metrics represent different ways of expressing 
accuracy and precision measures. The domain of weather 
predictions mainly uses two classes of evaluation methods, 
error-based statistics and measures of resolution between 
two outcomes. A related domain of wind mill power 
prediction uses statistical measures already listed above. 
Other domains like aerospace, electronics, and nuclear are 
relatively immature as far as fielded prognostics applications 
are concerned. In addition to conventional accuracy and 
precision measures, a significant focus has been on metrics 
that assess business merits like ROI (return on investment), 
TV (technical value), life cycle cost other than reliability 
based metrics like MTBF (mean time between failure) or the 
ratio MTBF/MTBUR (mean time between unit 
replacements). 

Several classifications of these metrics have been presented 
in [1] that are derived from the end use of the prognostics 
information. It has been argued that depending on the end 
user requirements one must choose appropriate sets of these 
metrics or their variants to appropriately evaluate the 
performance of the algorithms. 
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4. APPLICATION DOMAIN 
In this section we describe the application domain we used 
to show how these new prognostics metrics can be used to 
compare different algorithms.  

INL Battery Dataset 

In 1998 the Office of Vehicle Technologies at the U.S. 
Department of Energy initiated the Advanced Technology 
Development (ATD) program in order to find solutions to 
the barriers limiting commercialization of high-power 
Lithium-ion batteries for hybrid-electric and plug-in electric 
vehicles. Under this program, a set of second-generation 
18650-size Lithium-ion cells were cycle-life tested at the 
Idaho National Laboratory (INL).  

The cells were aged under different experimental settings 
like temperature, State-of-Charge (SOC), current load, etc. 
Regular characterization tests were performed to measure 
behavioral changes from the baseline under different aging 
conditions. The test matrix consisted of three SOCs (60, 80, 
and 100%), four temperatures (25, 35, 45, and 55˚C), and 
three different life tests (calendar-life, cycle-life, and 
accelerated-life) [5]. Electrode Impedance Spectroscopy 
(EIS) measurements were recorded every four weeks to 
estimate battery health. EIS measurements were then used to 
extract internal resistance parameters (electrolyte resistance: 
RE and charge transfer resistance: RCT, see Figure 1) that 
have been shown to empirically characterize ageing 
characteristics using a lumped parameter model for the Li-
ion batteries [6].  
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Figure 1 – Internal parameter values are used as 
features extracted from EIS measurements to 
characterize battery health. 

As shown in Figure 2, battery capacity was also measured in 
ampere hours by measuring time and currents during 
discharge cycle for the batteries. For the data used in our 
study, the cells were aged at 60% SOC and at temperatures 
of 25°C and 45°C. The 25°C data is used solely for training 
while the 45°C data is used for both training as well as 
testing.  

Different approaches can be taken to predict battery life 
based on the above measurements. One approach makes use 

of EIS measurements to compute RE+RCT and then uses 
prediction algorithms to predict evolution of these 
parameters. RE+RCT have been shown to be directly related 
to battery capacity and hence their evolution curve can be 
easily transformed into battery RUL. Another approach 
directly tracks battery capacity and trends it to come up with 
RUL estimates. In the next sections we describe our 
prediction algorithms and the corresponding approaches that 
were used to estimate battery life. 
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Figure 2 – Battery capacity decay profile at 45°C. 

5. ALGORITHMS EVALUATED 
In this effort we chose four data-driven algorithms to show 
the effectiveness of various metrics in evaluating their 
performance. These algorithms range from simple 
polynomial regression to sophisticated Bayesian learning 
methods. The approaches used here have been described 
before in [6, 7], but they are repeated here for the sake of 
completeness and readability. Also mentioned briefly is the 
procedure for how each of these algorithms was applied to 
the battery health management dataset. 

Polynomial Regression (PR) Approach 

We employed a simple data-driven routine to establish a 
baseline for battery health prediction performance and 
uncertainty assessment. For this data-driven approach, as the 
first step, the equivalent damage threshold in the RE+RCT 
(dth=0.033) is gleaned from the relationship between RE+RCT 
and the capacity C at baseline temperature (25ºC). Next, via 
extracted features from the EIS measurements, RE+RCT was 
tracked at elevated temperatures (here 45ºC). Ignoring the 
first two data points (which behave similar to what is 
considered as “wear-in” pattern in other domains), a second 
degree polynomial was used at the prediction points to 
extrapolate out to the damage threshold. This linear 
extrapolation is then used to compute the expected RUL 
values.  

Relevance Vector Machines (RVM) 

The Relevance Vector Machine (RVM) [8] is a Bayesian 
form representing a generalized linear model of the Support 
Vector Machine (SVM) with identical functional form [9]. 
Although, SVM is a state-of-the-art technique for 
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classification and regression, it suffers from a number of 
disadvantages, one of which is the lack of probabilistic 
outputs that make more sense in health monitoring 
applications. The RVM attempts to address these very issues 
in a Bayesian framework. Besides the probabilistic 
interpretation of its output, it typically uses a lot fewer 
kernel functions for comparable generalization performance. 

This type of supervised machine learning starts with a set of 
input vectors {xn}, n = 1,…, N, and their corresponding 
targets {tn}. The aim is to learn a model of the dependency 
of the targets on the inputs in order to make accurate 
predictions of t for unseen values of x. Typically, the 
predictions are based on some function F(x) defined over 
the input space, and learning is the process of inferring the 
parameters of this function. The targets are assumed to be 
samples from the model with additive noise: 

    ( ) nnn F ε+= wxt ;        (1) 

where, �n are independent samples from some noise process 
(Gaussian with mean 0 and variance �2). Assuming the 
independence of tn, the likelihood of the complete data set 
can be written as: 
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where, w = (w1, w2,…, wM)T is a weight vector and � is the 
N x (N+1) design matrix with � = [�(t1), �(t2), … �(tN),]T; 
in which  �(tN) = [1, K(xn,x1), K(xn,x2), …, K(xn,xN)]T, 
K(x,xi) being a kernel function.   

To prevent over-fitting a preference for smoother functions 
is encoded by choosing a zero-mean Gaussian prior 
distribution over w parameterized by the hyperparameter 
vector �. To complete the specification of this hierarchical 
prior, the hyperpriors over � and the noise variance �2 are 
approximated as delta functions at their most probable 
values �MP and �2

MP. Predictions for new data are then made 
according to: 

          �= .),,|(),|*()|*( 22 wtwwttt dppp MPMPMP σησ      (3) 

Gaussian Process Regression (GPR) 

Gaussian Process Regression (GPR) is a probabilistic 
technique for nonlinear regression that computes posterior 
degradation estimates by constraining the prior distribution 
to fit the available training data [10]. A Gaussian Process 
(GP) is a collection of random variables any finite number 
of which have a joint Gaussian distribution. A real GP f(x) is 
completely specified by its mean function m(x) and co-
variance function k(x,x’) defined as: 
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The index set ℜ∈X  is the set of possible inputs, which need 
not necessarily be a time vector. Given prior information 
about the GP and a set of training points {(xi,fi)| i = 1,…,n}, 
the posterior distribution over functions is derived by 
imposing a restriction on prior joint distribution to contain 
only those functions that agree with the observed data 
points. These functions can be assumed to be noisy as in real 
world situations we have access to only noisy observations 
rather than exact function values, i.e. yi = f(x) + �, where � is 
additive IID N(0,�n

2). Once we have a posterior distribution 
it can be used to assess predictive values for the test data 
points. Following equations describe the predictive 
distribution for GPR [11]. 
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A crucial ingredient in a Gaussian process predictor is the 
covariance function (K(X, X’)) that encodes the assumptions 
about the functions to be learnt by defining the relationship 
between data points. GPR requires a prior knowledge about 
the form of covariance function, which must be derived from 
the context if possible. Furthermore, covariance functions 
consist of various hyper-parameters that define their 
properties. Setting right values of such hyper-parameters is 
yet another challenge in learning the desired functions. 
Although the choice of covariance function must be 
specified by the user, corresponding hyper-parameters can 
be learned from the training data using a gradient based 
optimizer such as maximizing the marginal likelihood of the 
observed data with respect to hyper-parameters [12].  

We used GPR to regress the evolution of internal parameters 
(RE+RCT) of the battery with time. Relationship between 
these parameters and the battery capacity was learned from 
experimental data  [7]. Thus the internal parameters were 
regressed for the data obtained at and the corresponding 
estimates were translated into estimated battery capacity at 
45ºC using the relationship learnt at 25ºC. 

Neural Network (NN) Approach 

A neural network based approach was considered as an 
alternative data-driven approach for prognostics. A basic 
feed forward neural network with back propagation training 
was used; details on this algorithm can be found in [13, 14]. 
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As described earlier for the other approaches, data at 25oC 
was used to learn the relationship between internal 
parameter RE+RCT and the capacity C using the neural 
network NN1. In addition, the 45oC data was used as a test 
case. Here, measurements of the internal parameter RE+RCT 
are only available up to time tP (time at which RUL 
prediction is made). The available RE+RCT measurements 
are extrapolated after time tP in order to predict future 
values. This extrapolation is done using neural network NN2 
which learns the relationship between RE+RCT and time. 
Once future values for RE+RCT are computed using NN2 
these RE+RCT values are the used as an input to NN1 in order 
to obtain C. 

The structure of NN1 consists of two hidden layers with one 
and three nodes respectively. For the hidden layers tan-
sigmoid transfer functions and for the output layers log-
sigmoid transfer functions were chosen. Training considers 
random initial weights, a reduced memory Levenberg-
Marquardt algorithm, 200 training epochs, and mean-
squared error as a performance parameter. 

The structure and training parameters of the NN2 remained 
fixed during the forecasting. The net was trained with data 
available up to week 32, and then the resulting model was 
used to extrapolate RE+RCT until tEOP is reached or it is clear 
that it will not be reached if the model does not converge. 
Once the next measurement point is available at week 36, 
the net was trained again including the new data point. The 
resulting model was used to extrapolate RE+RCT from 
tp+1=36 onwards. It is not expected that a fixed net structure 
and fixed training settings could perform optimally for all 
the training instances as measurements become available 
week 32 onwards. To make sure the results are acceptable 
for all the training instances, the initial weights were set to 
random and the training was repeated 30 times. This allowed 
the exploration of with different initial values in the 
optimization of the weights and allowed the exploration of 
different local minimums. The results of the 30 training 
cases were aggregated on the extrapolated values by 
computing the median. Cases were observed where the 
training stopped prematurely resulting in a net with poor 
performance, these cases were regarded as outliers and the 
use of the median was intended to diminish the impact of 
such outliers while aggregating all the training cases. The 
structure of NN2 consists of one hidden layer with three 
nodes, and tan-sigmoid transfer functions for all the layers. 
Training considers random initial weights, a reduced 
memory Levenberg-Marquardt algorithm, 200 training 
epochs, and mean-squared error as a performance parameter. 

6. PERFORMANCE METRICS 
In this section nine different performance metrics are 
described. Four of them are the metrics most widely used in 
the community, i.e., accuracy, precision, Mean Squared 
Error (MSE), and Mean Absolute Percentage Error 

(MAPE). These metrics have been included to illustrate how 
these metrics are useful but may not capture time varying 
aspects of prognostic estimates. Further, five new metrics 
have been introduced that inclu such features of interest. 
These metrics have been first defined briefly and then 
evaluated based on the results for battery health management 
as presented in the following section. 

Terms and Notations 

• UUT is the unit under test 

• )(il∆ is the error between the predicted and the true RUL 
at time index i for UUT l. 

• EOP (End-of-Prediction) is the earliest time index, i, 
after prediction crosses the failure threshold. 

• EOL represents End-of-Life, the time index for actual 
end of life defined by the failure threshold. 

• P is the time index at which the first prediction is made 
by the prognostic system. 

• rl(i) is the RUL estimate for the lth UUT at time ti as 
determined from measurement and analysis. 

• )(* ir l is the true RUL at time ti given that data is 
available up to time ti for the lth UUT. 

• � is the cardinality of the set of all time indices at which 
the predictions are made, i.e. ( )EOPiPi ≤≤= |� . 

Average Bias (Accuracy) 

Average bias is one of the conventional metrics that has 
been used in many ways as a measure of accuracy. It 
averages the errors in predictions made at all subsequent 
times after prediction starts for the lth UUT. This metric can 
be extended to average biases over all UUTs to establish 
overall bias. 

      �
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Sample Standard Deviation (Precision) 

Sample standard deviation measures the dispersion/spread of 
the error with respect to the sample mean of the error. This 
metric is restricted to the assumption of normal distribution 
of the error. It is, therefore, recommended to carry out a 
visual inspection of the error plots to determine the 
distribution characteristics before interpreting this metric. 
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where m is the sample mean of the error. 

Mean Squared Error (MSE) 

Simple average bias metric suffers from the fact that 
negative and positive errors cancel each other and high 
variance may not be reflected in the metric. Therefore, MSE 
averages the squared prediction error for all predictions and 
encapsulates both accuracy and precision. A derivative of 
MSE, often used, is Root Mean Squared Error (RMSE).  

  �
=

∆=
�

� 1

2)(
1

i

iMSE .        (9) 

Mean Absolute Percentage Error (MAPE) 

For prediction applications it is important to differentiate 
between errors observed far away from the EOL and those 
that are observed close to EOL. Smaller errors are desirable 
as EOL approaches. Therefore, MAPE weighs errors with 
RULs and averages the absolute percentage errors in the 
multiple predictions. Instead of the mean, median can be 
used to compute Median absolute percentage error 
(MdAPE) in a similar fashion. 
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It must be noted that the above metrics can be more suitably 
used in cases where either a distribution of RUL predictions 
is available as the algorithm output or there are multiple 
predictions available from several UUTs to compute the 
statistics. Whereas these metrics can convey meaningful 
information in these cases, these metrics are not designed for 
applications where RULs are continuously updated as more 
data is available. It is desirable to have metrics that can 
characterize improvement in the performance of a 
prognostic algorithm as time approaches near end-of-life. In 
this paper we discuss one such application where algorithms 
are tracking battery health and show how newer metrics can 
encapsulate such information which is valuable for 
successfully fielded application of prognostics. Therefore, 
next we discuss new metrics tailored for prognostics and 
show how they are more informative than the ones 
traditionally used. 

Prognostic Horizon (PH) 

Prediction Horizon has been in the literature for quite some 
time but no formal definition is available. The notion 
suggests that longer the prognostics horizon more time is 
available to act based on a prediction that has some 
credibility. We define Prognostic Horizon as the difference 
between the current time index i and EOP utilizing data 
accumulated up to the time index i, provided the prediction 
meets desired specifications. This specification may be 
specified in terms of allowable error bound (�) around true 
EOL. This metric ensures that the predicted estimates are 

within specified limits around the actual EOL and hence the 
predictions may be considered trustworthy. It is expected 
that PHs are determined for an algorithm-application pair 
offline during the validation phase and then these numbers 
be used as guidelines when the algorithm is deployed in test 
application where actual EOL are not known in advance. 
While comparing algorithms, an algorithm with longer 
prediction horizon would be preferred.  

       iEOPH −=        (11) 

where ( ) ( ){ })1()()1(|min ** αα +≤≤−∧∈= rjrrjji l
� . 

For instance, a PH with error bound of � = 5% identifies 
when a given algorithm starts predicting estimates that are 
within 5% of the actual EOL. Other specifications may be 
used to derive PH as desired. 

�-� Accuracy 

Another way to quantify prediction quality may be through a 
metric that determines whether the prediction falls within 
specified accuracy levels at particular times. These time 
instances may be specified as percentage of total remaining 
life from the point the first prediction is made or a given 
absolute time interval before EOL is reached. In our 
implementation we define �-� accuracy as the prediction 
accuracy to be within �*100% of the actual RUL at specific 
time instance t� expressed as a fraction of time between the 
point when an algorithm starts predicting and the actual 
failure. For example, this metric determines whether a 
prediction falls within 20% accuracy (i.e., �=0.2) halfway to 
failure from the time the first prediction is made (i.e., � 
=0.5). 
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Figure 3 – Schematic depicting �-� Accuracy. 
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Relative Accuracy (RA) 

Relative prediction accuracy is a notion similar to �-� 
accuracy where, instead of finding out whether the 
predictions fall within a given accuracy levels at a given 
time instant, we measure the accuracy level. The time instant 
is again described as a fraction of actual remaining useful 
life from the point when the first prediction is made. An 
algorithm with higher relative accuracy is desirable. 
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Figure 4 – Schematic showing Relative Accuracy 
concept. 

Cumulative Relative Accuracy (CRA) 

Relative accuracy can be evaluated at multiple time 
instances. To aggregate these accuracy levels, we define 
Cumulative Relative Accuracy as a normalized weighted 
sum of relative prediction accuracies at specific time 
instances. 

�
=

=
�

� 1
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i

l RArwCRA λλ
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where w is a weight factor as a function of RUL at all time 
indices. In most cases it is desirable to weigh the relative 
accuracies higher closer to the EOL. 

Convergence 

Convergence is defined to quantify the manner in which any 
metric like accuracy or precision improves with time to 
reach its perfect score. As illustrated below, three cases 
converge at different rates. It can be shown that the distance 
between the origin and the centroid of the area under the 
curve for a metric quantifies convergence. Lower distance 
means faster. Convergence is a useful metric since we 
expect a prognostics algorithm to converge to the true value 
as more information accumulates over time. Further, a faster 
convergence is desired to achieve a high confidence in 
keeping the prediction horizon as large as possible. 

Let (xc, yc) be the center of mass of the area under the curve 
M(i). Then, the convergence CM can be represented by the 
Euclidean distance between the center of mass and (tp, 0), 
where 
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M(i) is a non-negative prediction error accuracy or precision 
metric. 
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Figure 5 – Schematic for the convergence of a metric. 

7. RESULTS & DISCUSSION 
As mentioned earlier, battery health measurements were 
taken every four weeks. Therefore, each algorithm was 
tasked to predict every four weeks after week 32, which 
gives eight data points to learn the degradation trend. 
Algorithms predict RULs until the end-of-prediction is 
reached, i.e. the estimates show that battery capacity has 
already hit 70% of the full capacity of one ampere hour. 
Corresponding predictions are then evaluated using all nine 
metrics. Estimates were available for all weeks starting week 
32 through week 64. Algorithms like RVM always predicted 
conservatively, i.e. predicted a faster degradation than 
actually observed. Other algorithms like NN and PR started 
predicting at week 32 but could not predict beyond week 60 
as their estimates had already crossed the failure threshold 
before that. GPR, however, required more training data 
before it could provide any estimates. Therefore, predictions 
for GPR start at week 48 and go until week 60. 

Table 1 – Performance evaluation for all four test 
algorithms with Error Bound = 5%. 

 RVM GPR NN PR 
Bias -7.12 5.96 5.04 1.87 
SSD 6.57 15.24 6.81 4.26 
MSE 84.81 184.16 59.49 17.35 

MAPE 41.36 53.93 37.54 23.05 
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PH 8.46 12.46 12.46 24.46 
RA (� = 0.5) 0.60 0.86 0.34 0.82 

CRA (� = 0.5) 0.63 0.52 0.55 0.65 
Convergence 14.80 8.85 13.36 11.41 
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Figure 6 – Predictions from different algorithms fall 
within the error bound at different times. 

In Table 1 results are aggregated based on all available 
predictions. These results clearly show that the polynomial 
fit approach outperforms all other algorithms in almost all 
cases. Even though the convergence properties are not the 
best they are comparable to the top numbers. However, 
using all predictions to compute these metrics results in a 
wide range of values, which makes it difficult to assess how 
other algorithms fare even if they may not necessarily be the 
best. Most metrics describe how close or far the predictions 
are to the true value but prediction horizon indicates when 
these predictions enter within the specified error bound and 
therefore may be trust worthy (see Figure 6). PR enters the 
error bound early on where as all other algorithms converge 
slowly as times passes by. The convergence metric 
encapsulates this attribute and shows that algorithms like 
GPR converge faster to better estimates and may be useful 
later on. We also learned that the current convergence 
metric does not take into account cases where algorithms 
start predicting at different time instances. In such cases 
algorithms that start predicting early on may have a 
disadvantage. Although this metric works well in most cases, 
a few adjustments may be needed to make it robust towards 
extreme cases. 

It must be pointed out that these metrics summarize all 
predictions, good or bad, into one aggregate, which may not 
be fair for algorithms that learn over time and get better later 
on. Therefore, next, it was decided to evaluate only those 
predictions that were made within the prediction horizon so 
that only the meaningful predictions are evaluated (Table 2). 
As expected the results change significantly and all the 
performance numbers become comparable for all 
algorithms. This provides a better understanding on how 
these algorithms compare. 

 

Table 2 – Performance evaluation for all four test 
algorithms for predictions made within prediction 
horizon with Error Bound = 5%. 

 RVM GPR NN PR 
Bias -1.19 -1.78 -1.53 0.22 
SSD 1.18 1.33 1.45 3.33 
MSE 2.03 3.96 3.27 7.75 

MAPE 39.33 30.40 27.44 23.25 
PH 8.46 12.46 12.46 24.46 

RA (� = 0.5) 0.77 0.62 0.69 0.95 
CRA (� = 0.5) 0.50 0.31 0.33 0.58 
Convergence 3.76 4.44 4.61 7.36 

 
Another aspect of performance evaluation is the requirement 
specifications. As specifications change the performance 
evaluation criteria also changes. To illustrate this point, 
prediction horizon was now defined on a relaxed error 
bound of 10%. As expected, prediction horizons become 
longer for most of the algorithms and hence more 
predictions are taken into account while computing the 
metrics. Table 3 shows the results with the new prediction 
horizons and now the NN based approach also seems to 
perform well on several criteria. This means that for some 
applications where more relaxed requirements are 
acceptable simpler approaches may be chosen if needed. 
 
Table 3 – Performance evaluation for all four test 
algorithms for predictions made within prediction 
horizon with Error Bound = 10%. 

 RVM GPR NN PR 
Bias -1.83 0.05 -1.53 0.22 
SSD 1.73 4.34 1.45 3.33 
MSE 5.02 10.6 3.27 7.75 

MAPE 37.01 31.20 27.44 23.25 
PH 12.46 16.46 12.46 24.46 

RA (� = 0.5) 0.76 0.79 0.69 0.95 
CRA (� = 0.5) 0.57 0.43 0.33 0.58 
Convergence 5.49 3.43 4.61 7.36 

Figure 7 shows the �-� Accuracy metric for all four 
algorithms. Since all algorithms except GPR start prediction 
from week 32 onward, t� is determined to be around 48.3 
weeks. At that point only PR lies within 80% accuracy 
levels. GPR starts predicting week 44 onward, i.e. its t� is 
determined to be around 54.3 week where it seems to meet 
the requirements. This metric signifies whether a particular 
algorithm reaches within a desired accuracy level halfway to 
the EOL from the point it starts predicting. Another aspect 
that may be of interest is whether an algorithm reaches the 
desired accuracy level some fixed time interval ahead of the 
EOL. In that case, for example, if t� is chosen as 48 weeks 
then GPR will not meet the requirement. Therefore, this 
metric may be modified to incorporate cases where not all 
algorithms may be able to start predicting at the same time. 
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Figure 7 – The �-� Accuracy metric determines whether 
predictions are within the cone of desired accuracy levels 
at a given time instant (t�). 
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Figure 8 – Battery capacity decay profile shows several 
features that are difficult to learn using simple 
regression techniques. 

It can be observed from the results (Figure 7) that most 
algorithms fail to follow the trend towards the end. These 
data-driven regression based techniques find it difficult to 
learn the physical phenomenon by which batteries degrade. 
As shown in Figure 8, initially the battery capacity degrades 
quite fast. Towards the end of the run degradation slows 
down. These algorithms are not able to learn this 
characteristic and predict an earlier EOL. 

Finally, we would like to mention a few key points that are 
important for performance evaluation and should be 
considered ahead of choosing the metrics. Time scales 
observed in various prognostic algorithms are often very 
different in different applications. For instance, in battery 
health management time scales are in the order of weeks 
whereas in other cases like electronics it may be a matter of 
hours or seconds. Therefore, the chosen metrics should 
acknowledge the importance of prediction horizon and 
weigh errors close to EOL with higher penalties. Next, these 
metrics may be modified to address asymmetric preference 
on RUL error. In most applications where a failure may lead 
to catastrophic outcomes an early prediction is preferred 

over late predictions. Finally, in the example discussed in 
this paper RUL estimates were obtained as a single value as 
opposed to a RUL distribution for every prediction. The 
metrics presented in this paper can be applied to 
applications where RUL distributions are available with 
slight modifications. Similarly for cases where multiple 
UUTs are available to provide data, minor adjustments will 
suffice. 

8. CONCLUSION 
In this paper we have shown how performance metrics for 
prognostics can be designed. Four different prediction 
algorithms were used to show how various metrics convey 
different kinds of information. No single metric should be 
expected to cover all performance criteria. Depending on the 
requirements a subset of these metrics should be chosen and 
a decision matrix should be used to rank different 
algorithms. In this paper we used nine metrics including four 
conventional ones that are most commonly used to evaluate 
algorithm performance. The new metrics provide additional 
information that may be useful in comparing prognostic 
algorithms. Specifically, these metrics track the evolution of 
prediction performance over time and help determine when 
these predictions can be considered trustworthy. Notions 
like convergence and prediction horizon that have existed in 
the literature for a long time have been quantified so they 
can be used in an automated fashion. Further, new notions of 
performance measures at specific time instances have been 
instantiated using metrics like relative accuracy and �-� 
performance. These metrics represent the notion that a 
prediction is useful only if it is available so far in advance 
that it allows some time to mitigate the predicted 
contingency. 

Whereas these metrics demonstrate several ideas specific to 
prognostics performance evaluation, we by no means claim 
this list of metrics to be near perfect. It is anticipated that as 
new ideas are generated and the metrics themselves are 
evaluated in different applications, this list will be revised 
and refined before a standard methodology can be devised 
for evaluating prognostics. This paper is intended to serve as 
a start towards developing such metrics that can better 
summarize prognostic algorithm performance. 



 10

REFERENCES  
[1] A. Saxena, J. Celaya, E. Balaban, K. Goebel, B. 

Saha, S. Saha, and M. Schwabacher, "Metrics for 
Evaluating Performance of Prognostics Techniques," 
in 1st International Conference on Prognostics and 
Health Management (PHM08) Denver, CO, 2008. 

[2] M. Schwabacher, "A Survey of Data Driven 
Prognostics," in AIAA Infotech@Aerospace 
Conference, 2005. 

[3] M. Schwabacher and K. Goebel, "A Survey of 
Artificial Intelligence for Prognostics," in AAAI Fall 
Symposium, Arlington, VA, 2007. 

[4] ISO, "Condition Monitoring and Diagnostics of 
Machines - Prognostics part 1: General Guidelines," 
in ISO13381-1:2004(E). vol. ISO/IEC Directives 
Part 2, I. O. f. S. (ISO), Ed.: ISO, pp. 14, 2004. 

[5] J. P. Christophersen, I. Bloom, E. V. Thomas, K. L. 
Gering, G. L. Henriksen, V. S. Battaglia, and D. 
Howell, "Gen 2 Performance Evaluation Final 
Report," Idaho National Laboratory, Idaho Falls, ID 
INL/EXT-05-00913, July, 2006. 

[6] K. Goebel, B. Saha, A. Saxena, J. Celaya, and J. P. 
Christopherson, "Prognostics in Battery Health 
Management," in IEEE Instrumentation and 
Measurement Magazine. vol. 11, pp. 33 - 40, 2008. 

[7] K. Goebel, B. Saha, and A. Saxena, "A Comparison 
of Three Data-Driven Techniques for Prognostics," 
in 62nd Meeting of the Society For Machinery 
Failure Prevention Technology (MFPT) Virginia 
Beach, VA, pp. 119-131, 2008. 

[8] Tipping, M. E., "The Relevance Vector Machine," in 
Advances in Neural Information Processing Systems. 
vol. 12 Cambridge MIT Press, pp. 652-658, 2000. 

[9] V. N. Vapnik, The Nature of Statistical Learning. 
Berlin: Springer, 1995. 

[10] C. E. Rasmussen and C. K. I. Williams, Gaussian 
Processes for Machine Learning: The MIT Press, 
2006. 

[11] C. K. I. Williams and C. E. Rasmussen, "Gaussian 
Processes for Regression," in Advances in Neural 
Information Processing Systems. vol. 8, D. S. 
Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds. 
Cambridge, MA: The MIT Press, pp. 514-520, 1996. 

[12] K. V. Mardia and R. J. Marshall, "Maximum 
Likelihood Estimation for Models of Residual 
Covariance in Spatial Regression," Biometrika, vol. 
71, pp. 135-146, 1984. 

[13] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern 
classification, Second ed. New York: John Wiley & 
Sons, Inc., 2000. 

[14] T. Hastie, R. Tibshirani, and J. Friedman, The 
Elements of Statistical Learning: Data Mining, 
Inference, and Prediction, Second ed., 2003. 

BIOGRAPHIES 

Abhinav Saxena is a Staff 
Scientist with Research Institute 
for Advanced Computer Science 
at the Prognostics Center of 
Excellence NASA Ames Research 
Center, Moffet Field CA. His 
research focus lies in developing 
and evaluating prognostic 
algorithms for engineering 
systems using soft computing 

techniques. He is a PhD in Electrical and Computer 
Engineering from Georgia Institute of Technology, Atlanta. 
He earned his B.Tech in 2001 from Indian Institute of 
Technology (IIT) Delhi, and Masters Degree in 2003 from 
Georgia Tech.  Abhinav has been a GM manufacturing 
scholar and is also a member of IEEE, AAAI and ASME. 

Jose R. Celaya is a visiting scientist 
with the Research Institute for 
Advanced Computer Science at the 
Prognostics Center of Excellence, 
NASA Ames Research Center. He 
received a Ph.D. degree in Decision 
Sciences and Engineering Systems 
in 2008, a M. E. degree in 
Operations Research and Statistics 
in 2008, a M. S. degree in Electrical 

Engineering in 2003, all from Rensselaer Polytechnic 
Institute, Troy New York; and a B.S. in Cybernetics 
Engineering in 2001 from CETYS University, Mexico. 

Bhaskar Saha is a Research 
Programmer with Mission Critical 
Technologies at the Prognostics 
Center of Excellence NASA Ames 
Research Center. His research is 
focused on applying various 
classification, regression and state 
estimation techniques for 
predicting remaining useful life of 
systems and their components. He 

has also published a fair number of papers on these topics. 
Bhaskar completed his PhD from the School of Electrical 
and Computer Engineering at Georgia Institute of 
Technology in 2008. He received his MS from the same 
school and his B. Tech. (Bachelor of Technology) degree 
from the Department of Electrical Engineering, Indian 
Institute of Technology, Kharagpur. 



 11

 

Sankalita Saha received her 
B.Tech (Bachelor of Technology) 
degree in Electronics and 
Electrical Communication 
Engineering from Indian Institute 
of Technology, Kharagpur, India 
in 2002 and Ph.D. degree in 
Electrical and Computer 
Engineering from University of 
Maryland, College Park in 2007. 

She is currently a post-doctoral scientist working at 
RIACS/NASA Ames Research Center, Moffett Field, CA. 
Her research interests are in prognostics algorithms and 
architectures, distributed systems, and system synthesis. 

Kai Goebel is a senior scientist at 
NASA Ames Research Center 
where he leads the Prognostics 
Center of Excellence 
(prognostics.arc.nasa.gov). Prior 
to that, he worked at General 
Electric’s Global Research Center 
in Niskayuna, NY from 1997 to 
2006 as a senior research scientist. 
He has carried out applied 

research in the areas of artificial intelligence, soft 
computing, and information fusion. His research interest 
lies in advancing these techniques for real time monitoring, 
diagnostics, and prognostics. He has fielded numerous 
applications for aircraft engines, transportation systems, 
medical systems, and manufacturing systems. He holds half 
a dozen patents and has published more than 75 papers. He 
received the degree of Diplom-Ingenieur from the 
Technische Universität München, Germany in 1990. He 
received the M.S. and Ph.D. from the University of 
California at Berkeley in 1993 and 1996, respectively.

 


